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TECHNICAL MEMORANDUM

DESIGN OF A MULTIPLE-PLY LAMINATED COMPOSITE TAPERED BEAMS

INTRODUCTION

In a recent paper, 1 the author developed a method based on classical lamination theory (CLT)

and a linear elastic solution for the optimum design of a special class of laminated cantilever beams.

The method, developed for beams which are tapered in width and thickness, expresses the exten-

sional and bending stiffness matrices as functions of the linearly varying thickness along the length

of the beam. The method also expresses the bending moment per unit width as a function of the

linearly varying width along the length. The special case analyzed was the case of a four-ply

laminated beam where the two outermost plies were tapered. The present work extends the original

research to laminated beams of multiple plies.

Findings of the present research include very high dependence of the interlaminar shearing
stresses on the difference in layup angle between a tapering ply and the one adjacent to it. Other

findings are that due to the strong dependence of the bending stresses on the stiffness parameter

Dll, the location of the highest bending, and consequently transverse (interlaminar) shear stresses,

can be determined by knowing the shape of the Dli curve as a function of beam length. It is also

found that in some instances, stresses can be reduced by over 50 percent by simply interchanging

plies within the design laminate with very small changes in the corresponding beam stiffness (less

than 8 percent). The work presented here serves as a precursor to future research where the effects

of the time,dependent behavior of the viscoelastic matrix of the composite material is included. As

the use of composite materials becomes more widespread for space applications, such as for the

Advanced X-Ray Astrophysics Facility-S (AXAF-S) project, design engineers will need more

knowledge of long-term structural behavior of composite systems.

LAMINATED BEAM EQUATIONS

Following the CLT, the assembled extensional and bending stiffness matrices for an

orthotropic material can be expressed as,

All A12 A16 ][Aij] = A21 A22 A26

A61 A62 A66

(1)

I Dll D12 D16 1[Dij ] = D21 D22 D26 (2)

D61 D62 D66

The individual terms of equations (1)and (2) can be obtained following the procedure pre-

scribed by the CLT with the exception that only the innermost plies are not tapered and their thick-

ness does not depend on x. The outer plies are tapered and must be expressed as functions of x. In

practice, plies cannot be tapered. In this report, the length of one tapered ply is equivalent to the

length of several stepped plies which simulate the slope of the desired taper (figs. 1 and 1a). With
this in mind, one can write,
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Figure la. Tapered beam dimensions and geometry.
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where t') (k)=._j are the transformed reduced stiffnesses for the kth ply. Plies k m through m are the tapered

plies at the bottom of the laminate. Plies k n through n are the tapered plies at the top of the laminate.

L represents the length of the ply, and tk is the thickness of the ply. The validity of equations (3) and

(4) is demonstrated in reference 1. One should notice that in equations (3) and (4), the terms

[zr@- [z._,+@-
account for the dependence of the stiffness parameters Aij and Dij on the linear variation of thickness

along the length of the beam.



For the casesstudied,only pure bendingof taperedbeamsis considered.With this assump-
tion, the extensionalstiffnessmatrix Aij will not play a role in the solution of the beam problem. This
would not be the case if the solution were to include the effects of transverse shear deformations)

The constitutive relationships for the beam subjected to pure bending can be expressed as,

°°16 / x)Yy =/D2t D22 D26{ Ms (5)

rxy [ D61 062 D66 ] M_

For the beams studied, only bending along the longitudinal axis of the beam will be con-

sidered. This implies that

My = Mxy = O (6)

The strain-displacement relationships for the typical Euler-Bernoulli beam are expressed as

02w b2w b2w

Yx = bx2 , Yy = by 2 , Yxy = -2 i)xby " (7)

For beams with large length-to-width ratios, the deflection w can be treated as being a func-

tion of x only. Equations (5), (6), and (7) can be combined to express the Euler-Bernoulli beam

equation as,
d2w ,

Yx = - --_ = D11Mx , (8)

where D:*1 is the first term of the inverted bending stiffness matrix. Equation (2) can be inverted

numerically and a value of D_I can be obtained at each location of x desired along the length of the

beam. Figure 1 shows the beam dimensions and geometry.

Once the values for D_ are obtained, they can be easily curve fitted with a higher order

polynomial to obtain an equation as a function of length. This equation is of the form

n

o;,= E rz'-' (9)

In the present formulation, a compliance function of the form of equation (9) is calculated for

each beam segment with tapered plies. Figures 2 through 4 show the comparison of actual versus

curve fitted values of D_: for three different beam configurations. The material and geometry

parameters used are shown in table 1.

Table 1. Material and geometry parameters.

Geometry

w e - 4.50 in

Material

E: 1 - 21.0E6 lb/in 2

w o - 6.00 in E22 - 1.7E6 lb/in 2

te - 0.50 in G12 - 0.65E6 lb/in 2

to - 1.00 in Vl2 - 0.31

L - 29.25 in v21 - 0.017



5.00e-5'

4.00e-5'

Calculated from Eq. 4

Calculated from Eq. 9

D11 3.00e-5"

(l_in)l
2.00e-5.

1.00e-5"

O.OOe+O | |

0 10 20 30

x-coordinate (Beam Length - in)

Figure 2. D_"1 versus length for a four-ply tapered laminated beam [45/-45]s.

3.00e-5

2.00e-5'

Calculated from Eq. 4

Calculated from Eq. 9

Q

Dll

(Ib-in) -1
1.00e-S,

0.00e+0 i ,

0 10 20 30

x-coordinate (Beam Length - in)

Figure 3. D_1 versus length for an eight-ply tapered laminated beam [90/45/-45/0]s.
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8.00e-6

t

Dll

(Ib-in) -1

7.00e-6"

5.00e-6'

4.00e-6'

Calculated from Eq. 4

Calculated from Eq. 9

3.00e-6'

2.00e-6 z ,

0 10 20 30

x-coordinate (Bum Length - In)

Figure 4. Dl"l versus length for a 12-ply tapered laminated beam [90/45/30/15/0/0]s.

In equation (8), M x is the moment per unit width of the beam. Since the width of the beams

under study vary linearly as a function of length, this term becomes,

M P(L-x)
g x = WlX+W2 - WlX.FW 2 ,

where

P = applied load at free end = qWe

q = uniformly distributed applied line load at free end

w e = beam width at free end

w o = beam width at fixed end

We--W o

Wl = L

w 2 =w o

substituting equations (9) and (10) into equation (8) leads to

r:i-, [e(t-x) l
dx 2 - i=1 [_/"

(10)

(1 la)

(l lb)

(12)

6



Performingtherequiredmultiplications,equation(12)canbe expressed in polynomial form.

The resulting equation is easily integrated to obtain slope and deflection values.

where

d2w n
dx 2 = _-1_ A ix_-I (13)

FiP(L-x) (13a)
,_. i - wzx+w 2

Integrating equation (13), one can obtain values for slope and deflection at any point along

the beam. Since the origin of the beams under analysis is located at the base (fixed end) of the beam,

the boundary conditions of zero slope and deflection at the fixed end allow the elimination of con-

stants of integration. Thus the slope and deflection of the beam can be expressed as

dw n 2 ix i (14)
-_ =_-1 i '

-- W = _ /91' ixi+l
i=1 (i+ 1)i (15)

Equation (13) represents a smooth continuous function for isotropic materials and for lami-

nated materials where all ply angles are equal. However, because the bending stiffness Dll is a

function of material properties as well as laminate layup and thickness, marked discontinuities can

occur at locations where plies "taper off" to zero. At these locations, the curvature can be discon-

tinuous because it is calculated independently for each beam segment with tapered plies. The physi-

cal problem, however, does not allow discontinuities in slope at a location where a ply thickness

becomes zero. With this knowledge, the degree of the polynomial in equation (13) can be selected

such that the curvature over the length of the entire beam is reasonably approximated. As an

example, an eight-ply laminated tapered beam [901451-4510]s, in which only the interior

[-45/0/0/-45] plies remain of constant thickness, produces the curvature plot shown in figure 5.

Material properties and geometry are shown in table 1. The marked discontinuity occurs because the
outermost plies taper down in thickness to zero at this location (x = 14.625 in); and because, again,

for each segment, the curvature is calculated independently. Also, at this location the laminate at x
greater than 14.625 in only has six plies with the outermost plies having a layup angle of 45 °. The

laminate at x less than 14.625 in has eight plies with the outermost plies having a layup angle of 90 °.
Therefore, the beam stiffness is discontinuous at this location (x = 14.625 in). By approximating the

curvature with a polynomial, a continuous function which can be easily integrated will be available.

Figure 5 also shows the approximation from equation (13). Equation (15) is plotted in figure 6 for the

[901451-4510] s beam. This figure shows the calculated deflected shape of the cantilever beam.

STRESS CALCULATIONS

The stress-strain relationships can be expressed in the classical sense as,

{t_ i}k=[Qij]k{(e j}+Z{yj}} , (16)

where the curvatures _ are calculated as in equation (13). Since the problems investigated are pure

bending, the strains ej become negligible, and the stresses become principally functions of the curva-

tures. Figure 7 shows the normalized bending stresses for a laminated beam where all plies are
isotropic.

7



0.03

0.02

d2w 0.01

dx 2

(in) -1

0.00

-0.01

Calculated from Eq. 13

| |

0 10 20 30

x-coordinate (Beam Length - in)

Figure 5.

Figure 6.

Curvature versus length for an eight-ply laminated beam [90/45/--45/0]s.

W

(in)

8

6

4

2

n Calculated from Eq. 15

! I

0 I0 20 30

x-coordinate (Beam Length - in)

Deflection versus length for an eight-ply laminated beam [90/45/-45/0]s.



1.2

1.0

0.8

(_Xb 0.6

0.4

0.2

x = 9.75 in

Ply I (tapered from 0.0 to 9.75 in)

Ply 2 (tapered from 9.75 to 19.50 in)

Ply 3 (tapered from 19.50 to 29.25 in)

Ply 4 (nontapered)

x = 19.50 in

! I

0.0 0 10 20 30

x-coordinate (Beam Length - in)

Figure 7. Normalized bending stress versus beam length (multiple isotropic layers).

This serves the purpose of illustrating the stress variation of each ply as a function of length.

For this example, the outermost three plies are involved in the tapering of the beam. One should

notice how the inner ply stress equals the outer ply stress at the point where the outer ply tapers to
zero thickness. In other words, the stresses for plies 1 and 2 are equal at x = 9.75 in; and the

stresses for plies 2 and 3 are equal at x = 19.5 in. This is to be expected since the bending stiffness

is a continuous function due to the isotropic nature of the plies. One should notice that ply 1 tapers

off at x = 9.75 and ply 2 tapers off at x = 19.5 in. The stress for ply 4 is shown to illustrate the varia-

tion in stress for a nontapering isotropic ply.

For laminated orthotropic beams in which the bending stiffness is discontinuous at locations

where plies taper down to zero thickness, the stresses will also have a marked discontinuity. In
some instances, the inner plies may be subjected to higher stresses. Note that for isotropic beams,

one would normally expect the highest bending stresses to occur at the outermost fiber. Figure 8

shows the bending stress distribution for a [90/60/45130/15/0]s beam. Note that the outermost ply

tapers down to zero thickness at x - 9.75 in. At this point, the second ply becomes the outermost ply

up to x = 19.50 in. The third ply then becomes the outermost ply for the remainder of the length of the
beam.

It is also important to note that the 60 ° ply begins tapering at x = 9.75 and ends with zero

thickness at x = 19.50. Likewise, the 45 ° ply begins tapering at x = 19.50 and ends with zero thick-
ness at x = 29.25. For this laminated beam the maximum bending stress occurs at x = 19.50 on the

0 ° ply above the center line of laminate symmetry (not shown in the figure).

9



The remaining in-plane stresses due to bending try and trxy are also obtained by substituting

equations (5) and (4) into equation (16) and setting ej = 0. In this manner, one obtains

(t)u/'/_(*)n* ±_(k)n* .,_,,_(*)n*
--(k) : Z _'AX_I2UllTk522L"I2T_26L'I6 ]Oy b (17)

(t) (k) * (k) * (k) *
xy b (18)

Figure 9 shows the variation of try for the top plies of the symmetric laminate investigated in

figure 8. For an isotropic beam, these stresses would be negligible; but for the orthotropic laminate
studied, the maximum try stress is 13,050 lb/in 2. This stress occurs at x = 9.75 on the 30 ° ply above
the center line of laminate symmetry. One can also notice that the stress at x = 19.50 on the 60 ° ply
has a significantly high compressive try stress. This shows that buckling or compressive failure is

possible at locations where one would normally expect to see only tensile stresses (isotropic case).
Figure 10 shows the variation of trxy for the top plies of the beam. Again, for the isotropic beam, one

would expect these stresses to be negligible; but for this case, the maximum trxy stress is 16,850
lb/in 2. This occurs at x = 9.75 on the 30 ° ply.

|

Figure 8.

I

Ply I (tapered from 0.0 to 9.75 in)

Ply 2 (tapered from 9.75 to 19.50 in)

Ply 3 (tapered from 19.50 to 29.25 in)

Ply 4 (nontapered)

3O

x-coordinate (Beam Length - in)

Normalized bending stress versus beam length [90/60/45/30/1510]s.
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O'y b

2

Ply 1 (tapered from 0.0 to 9.75 in)

Ply 2 (tapered from 9.75 to 19.50 in)

Ply 3 (tapered form 19.50 to 29.25 in)

Ply 4 (nontapered)

Figure 9.

I I

10 20 30

x-coordinate (Beam Length - in)

Normalized in-plane stress versus beam length [90/60/45/30/15/0]s.

-I

2

-2

J Iu Ply 1 (tapered from 0.0 to 9.75 In)

I ..... -"...... Ply 2 (tapered from g.75 to 19.50 In)

J .............._ ............Ply 3 (tapered from 19.50 to 29,25 In)

I "'___:_ ............ "'_.

...... "_i_....,,. _," ..

0 I0 20 30

x-coordinate (Beam Length - in)

Figure 10. Normalized in-plane shear stress versus beam length [90/60/45/30/15/0]s
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INTERLAMINAR SHEARING STRESSES

Laminated composite materials have relatively weak interlaminar shear strength, the load

being sustained primarily by the resin or matrix at the ply interfaces. The CLT assumes that points
lying initially on a normal-to-the-middle plane of the beam remain normal-to-the-middle surface of

the beam after bending. This is one of the same assumptions used in the development of small

deflection theory of thin plates. 3 This assumption is equivalent to ignoring sheafing strains in planes
perpendicular to the middle surface of the laminate. This also means that the entire laminate is

treated as a single continuous layer with linear through-the-thickness strain variation. This is

known as the Kirchoff hypothesis. 4 For laminated beam analysis, this implies that the interlaminar

shear stress axz cannot be calculated from the laminate stress-strain relationships. Instead, we

must rely on the equations of motion (equilibrium) of classical theory of elasticity for the determina-
tion of these stresses.

The finst equation of motion can be expressed in terms of Cartesian stress components as

-- + _ + _ + pb x = pf_ ,
Ox i)y _)z

(19)

where b x are external body forces and fx are acceleration forces. For the static problems analyzed,

these forces will be neglected. The resulting equation of equilibrium becomes

_o x _0_ _0_
_+_+_=0.
0X 0y 0Z

(20)

Since the beams under investigation are loaded with an evenly distributed load at the tip and

since the length-to-width ratio of these beams is large, the variation of the in-plane sheafing stress

Crxy across the width dimension y is negligible. Equation (20) can now be expressed as

Oo x OOxz
+ _ = 0 . (21)

/)x Oz

Equation (21) can be solved for trxz in the following manner:

_a x
a x_=- f_ ---_- dz . (22)

One should notice in equation (22) that if trx is a linear function of x, the derivative OtrJOx is

constant. This implies that trxz would be a function of the thickness coordinate z only. This would be

the case if the cross sections of the beams under investigation were constant. Since the investiga-

tion deals with beams of linearly varying width and thickness, the nonlinear variation of trxz as a

function of length must be considered. Following Timoshenko 5 and Gere and Timoshenko, 6 the

appropriate expression for trxz can be derived. Assuming that the beam of rectangular cross section

in figure 11 does not have high rate of change in cross sectional thickness and width, the magnitude
of the sheafing stresses can be calculated by applying the same method used for prismatic beams.

12
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Summation of forces in the x direction leads to the following equation of equilibrium of the
shaded element,

(t+dt__...._) 1.

I I

In equations (23) through (36), w is a width variable and not a deflection. Expanding equation
(23) and neglecting products of small differential quantities, one obtains

=w + -_ (axdw)dz-J_ (Crxw)dz.
(24)

The expression for bending stress for the kth ply is obtained in a similar manner as equations
(17) and (18)

- (k) (k) * (k) * (k) *
tY_ )- z Mx((_IIDII+t_I2'DI2+O16D16 ) . (25)

The quantity in the parenthesis is expressed in condensed notation as (QDx) Ck), and equation (25) is

rewritten as

cr fxk) = z _k)MxfQD x) (k) . (26)

The quantity in the parenthesis of the first integral in equation (24) can be expressed as

( d°xdx) z_k)(Mx(QDx)_k)+d[Mx(QDx )tk)] }tr _ + _ = dr dx . (27)

The integral can now be expressed as

w z Mx(QDx) <k)+ dz (28)
z(k) dr "

Performing the necessary integration and neglecting products of small differential quantities,
one obtains the following expression:

wt28 Mx(QDx)tk) + _wtdt [Mx(QD_)tk)] w[ztk)]22 [Mx(QDx)fk)] +--ff-wt2d[Mx(QDx)fk)]dr dr

w[zfk)] 2 d[gx(QDx )<k)] dx .
2 dx

(29)

Substituting equation (26) into the second integral on the right-hand side of equation (24)

and performing the necessary integration yields the following expression after neglecting products of
small differential quantities:

t2dw [Mx(QDx) <k)] [zfk)12dw [MxfQDx) Ck)] (30)
8 2 "
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Following this sameprocedure, the third integral on the fight-hand side of equation (24)

becomes

t_v [M_(QD,,)ck)]_[z_k)]2w[Mx(QDx) <k)] (31)
8 2 "

ing:

Adding expressions (29), (30), and (31) according to equation (24), one obtains the follow-

wt2 d[Mx(QDx) (k)] dx - w[zfk)]2 d[Mx(QDx) (k)]
tr _zwdx = _._.£t[Mx(QDx)fk)]d t + _ dx 2 dr dr

t 2 [Mx(QDx)_k)]dw [z(k)]2 [Mx(QDx)(k)]dw
+Y 2 "

(32)

Solving for Crxz.the following is obtained:

3)[ dr + w
(33)

tO

For the beams under analysis, both the width and thickness are linear functions of x according

t(X) = t lX +t 2 , (34a)

w(x) = wlx+w 2 , (34b)

where

te--t b

tl -- L t2 = tb '

We--W b

Wl = L w2 = wb "

Taking the derivatives of equations (34) with respect to x leads to

de _ m m (35a)

dw We--Wb

"-_ =wl=" L
(35b)

Substituting the results of equations (35) into equation (33) yields the final expression for

interlaminar shear stress for the kth ply.

tl(tlX+t2)
trf k) = [Mx(QDx) fk)] +

•z 4 wl fk)]) (36)+ wxx+w 2 [M_(QDx) •

One should notice that equation (36) gives the value of Crxzat any location along the length x

and through the thickness z of the laminated beam. Due to limitations in the validity of equation (36)

for large values of width-to-thickness ratio 7 89 and because for small values of this ratio, stress
singularities at the free edges can cause delaminations; 1° 11 our studies are limited to
6 <w/t < 10.
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As observed by Whitney, 11 the interlaminar shear stress variation through the thickness of

the laminate is highly dependent on the lamina stacking sequence. Figure 12 shows a comparison

between the transverse shear stress for two orthotropic beams; [901451301151010]s and [06] s. Both

beams have the same geometry and material; however, only the [06] s laminate produces the stress

distribution which is typical for the fixed end of a doubly tapered cantilever beam. If the material were

isotropic, this stress distribution would be similar to the [06]s laminate. Figures 13 through 15 show

these stresses as calculated at various locations along the length of the beam. One should notice
how, in all cases, the [901451301151010]_ develops considerably higher stresses. It is also of interest

to note that at x = 29.25, where the tapered beam consists of only [02]s plies, the shape of the

distribution follows the classical sense for both laminates. This is to be expected since there is no
stiffness mismatch between plies at this location.
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%
600"
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200"
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Figure 12.
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[o6] s

I l I I I
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Transverse shear stress comparison for tapered beams
(orthotropic versus isotropic).
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As a direct result of the variation in stiffness along the length of the beam and because

certain plies taper off to zero thickness at specific locations, there can be significant differences in
stress on either side of the point where a ply "tapers off." It has been seen that the greater the

difference between the ply layup angle of two adjacent plies, the greater this difference in stress.

Figure 16 shows a comparison of the outermost ply bending stresses for three laminates. These are,

a. [455] s

b. [45190180160145]s

c. [80/90/45/60/45]s.

The geometry and material properties are the same as the beams previously investigated.
One should notice that the only difference in b and c is the interchange of the 80 ° and 45 ° plies.

These plies have a difference in ply layup angle with the 90 ° ply of 10 ° and 45 ° respectively. It is evi-
dent that for both cases b and c, the greatest difference in stresses at the point where a ply tapers off

occurs at the 45/90 or 90145 interface. Also, the magnitude of the largest value of stress is consider-

ably smaller for the c laminate. This is an important observation since the overall spring rate for both

the b and c laminates changes very little. A summary is presented in table 2.
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Outermost ply bending stress comparison for three orthotropic laminates.

Table 2. Summary of stress and stiffness for tapered beam

(top ply only) (200 lb applied load).

Laminate Max. Bending Stress Spring Rate

(lb/in 2) (lb/in)

[455] s 6,821 53.62

[45/90/80/60/45]s 19,711 56.98

[80/90/45/60145]s 8,010 61.35

It is seen that a reduction in maximum bending stress of 59 percent occurs by simply changing

the location of the 45 ° and 80 ° plies. The spring rate, however, increases by only 7.6 percent. Figure

17 shows a comparison plot of the bending stiffness component Dll for the b and c laminates. It is

relatively straight forward to see that the effect of the tapering plies on the b laminate is consider-

ably greater. This is evident by the higher rate of change of the stiffness over the first 10 inches of

the beam length. Figure 17a shows the bending stiffness components D]I, D12,, and D16 for laminate

b. The same discontinuity at x = 9.75 in is evident for all three curves.
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The Dq stiffness plots can be used as an indicator for determining at which locations stresses

will be highest. The following rules are proposed:

Stiffness/Stress Rules

" Dl i curves with highest rate of change indicate

highest stresses
• Sharp discontinuities, "knees," in the Dll curves

indicate locations of highest stresses.

As an illustration, figure 18 shows the bending stress distribution along the length of the

beam. One can easily notice that at the point where the top ply (45 ° ply) tapers off, a sharp discon-

tinuity in stress occurs. A corresponding stress change occurs at the 90 °, 80 °, and 60 ° plies at this
location.

The change in stiffness at the point where the second ply tapers off is almost negligible;

likewise, the change in stress at this location (x = 19.50 in) is small (smooth transition).

From equation (22), it is evident that the transverse shear stress trxz is a direct function of

the bending stress crxb. With this knowledge, using the proposed stiffness/stress rules, one can

analogously predict where the maximum interlaminar shear stresses will occur. Figure 19 shows
these stresses for the three outermost (tapered) plies of the beam. One should notice how the

maximum stress occurs, as expected, at the point where the first ply tapers down to zero thickness.

This is also the location where the greatest stress discontinuities occur. These discontinuities,

again, are due to two reasons:

The outermost plies are tapering which contribute to a rapid increase in the compliance

matrix (decrease in stiffness matrix). At the point where the ply tapers, the stiffness

change is analogous to that of an isotropic beam with a sudden change in cross-sectional

area.

• The difference in the layup angle between the tapering ply and the adjacent ply is

greatest.

Another parameter which provides meaningful information about the relative magnitude and

location of highest stresses is the nondimensional stiffness parameter (QD x) [see equations (25)

and (26)]. Figures 20 through 23 show how this parameter varies as a function of length of the beam.

Figure 20 clearly shows a marked difference between the first (45 °) and second (90 °) plies while
there is a small change between the second (90 °) and third (80 °) plies. In this figure, all plies are

tapered which means they are the outermost plies. In figures 21 and 22, one can notice the large dif-

ferences in (QD x) for the 80-to-60 and 60-to-45 ply interfaces respectively. Large stress discon-

tinuities would be expected at these plies based on this notion. However, one should recall that in

figure 17, the bending stiffness parameter Dll had the highest rate of change up to the x = 9.75 in

location. Between 9.75 and 29.25 in, the Dll parameter had a very smooth curve. This implies that in

order to predict the relative location and plies that have the largest stresses, it is important to know

the difference in the (QD x) parameter between adjacent plies and the rate of change of the Dll bend-

ing stiffness parameter as a function of beam length. With this in mind, the magnitudes and discon-
tinuities of the interlaminar stresses in figure 19 can be explained.
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Since the bendingstiffnessparameterDI_ has the highest discontinuity at x = 9.75 in, this

should be the location of the highest overall stresses. This can clearly be seen in figure 19 where the

differences in tyxz at the x = 19.50 in location are considerably lower.

Figures 24 and 27 are plots of the interlaminar shear stresses between adjacent plies at the
x = 9.75 in and x = 19.50 in location. These plots also show the ply angle corresponding to each

lamina. Figure 24 shows a large stress difference between the 45 ° ply and the 90 ° ply at the
x = 9.75 in location while the stress difference between the 90 ° and 80 ° plies is almost negligible.

This corresponds directly to the difference in the (QD x) parameter in figure 20 at the same locations.

Figure 25 indicates a larger difference between stresses at the 80 ° to 60 ° ply interface at

x = 19.50 in. Again this compares directly with the (QD x) parameter difference in figure 21. The

magnitude of these stresses, however, is lower because the DI*1 curve has approximately the same

rate of change on either side of the x = 19.50 in location. The difference in stresses in figure 26 again

corresponds to the difference in (QD x) in figure 22. One should notice, however, that the stress

between the 60 ° and 45 ° ply does not go to zero at the free end (x = 29.25 in) of the beam. This is

because at the free end, where the load is applied, the transverse shear stress distribution allows

stresses to be zero only at the outermost plies (80 ° to 60 ° interface) and not necessarily at any of

the inner plies. Again figures 27 and 23 show the same relationship between Crxzand (QD x) pre-

sented in the previous plots.

SUMMARY

The design engineer must have knowledge of the effects of material and geometric properties

on the magnitude and location of stresses and deformations on designed hardware during the design

process. This is particularly true when designing complex components fabricated from composite

materials. For the case of laminated tapered beams, the following recommendations are offered:

The difference in ply angle between a tapering ply and the adjacent one should be as small

as possible to reduce the magnitude of the bending and interlaminar shearing stresses and

their discontinuities at the point where the ply "tapers off."

A laminate should be designed so that it will produce the smallest rate of change in the

bending stiffness components Dij. The laminate design should produce the smoothest,

although not necessarily, continuous curve possible.

• The designed laminate should exhibit the smallest differences in (QD x) between tapering

and nontapering plies.

In reading these recommendations, it is obvious that a completely isotropic beam will meet all

of them. It is also noted that laminates in which all ply angles are the same also meet these recom-

mendations. Figure 28 shows a plot of the bending components Dll, D12, and D16, for a [305] s

laminate. There are no discontinuities in any of the curves indicating a smooth transition of stresses

between tapering and adjacent plies. One should notice however that the rate of change of these

curves decreases towards the tip of the beam. This along with the fact that the bending moment per

unit width (fig. 29) increases toward the fixed end of the beam indicates that the highest stresses

are to be expected toward this end. Another interesting plot is figure 30 where (QD_,) plots for the

[305] s laminate are all identical. This is to be expected since all plies have the same transformed
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reducedstiffnessesQij and the stiffness terms Dij do not produce discontinuous curves. Figure 31

shows the bending stress distribution for this laminate. It is important to note that it has the same

kind of stress distribution exhibited by an isotropic multiple ply laminate (fig. 7).

Efficient and effective structural components can be manufactured with the knowledge of

material and physical characteristics of the design. This study offers these design considerations for

a particular class of laminated beams. Future work could possibly involve beams of more complex

cross sections such as those typically used in structural design applications. Cross sections such as

I, C, or H shapes can twist when bending loads are applied. Tapering such beams may result in

increased warping resistance and decreased interlaminar shearing stresses. Structural optimization
of the laminate can also minimize the weight while making the member structurally sound.
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Figure 24. Interlaminar shear stress between adjacent plies [45190180/60145]s.
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